Hawaii grid can’t handle the demand for solar, slowing installations


There is a huge demand for rooftop solar in Hawaii. However, the grid is barely able to handle the current amount of solar power. The utility has cut way back on new permits and the solar industry is losing workers. The problem, of course, is that solar is variable. When the sun shines, thousands of rooftop systems produce power, and some of it goes back into the grid.

HECO says it is not deliberately trying to hurt the solar industry. Rather, the utility is seeing a growing number of circuits exceeding 100 percent of minimum daytime load during the daytime in residential areas. On the Big Island, HECO says that 10 percent of circuits had reached unstable levels as of February of this year.

“This is a difficult technical issue, and we’re not aware of another utility in the world that has addressed it. There’s no model for us to follow, no resource for us to tap into. We’re really creating new frontiers on this,” said Jay Ignacio, president of the HECO subsidiary HELCO.

Reform is coming, forced on HECO by impatient politicians and homeowners who accuse the utility of being deliberately lethargic. Circuits will be beefed up. Customers will get full net metering rates. However they will pay monthly fees for grid costs.

Ivanpah planning multiple ways to stop frying birds

Credit: ivanpahsolar.com/
Credit: ivanpahsolar.com

Reflected heat from mirrors at the Ivanpah solar thermal plant in California near Primm NV has been killing large numbers of birds. To their credit, site operator BrightSource Energy is creating bird deterrent systems. These include anti-perching devices, sonic deterrents, anti-bird LEDS,  and waste and water containment so birds don’t gather.

As to the efforts currently underway, the waste and water containment is actively being done daily and the heliostat repositioning is complete. The sonic deterrent has been purchased and is in the process of being tested on site. The lighting on the towers are now being turned off at night and bids to replace the current ground level lighting with LED were returned this week and will be purchased and installed.

They also plan to donate $1.8 million to cat trap, neuter, and release organizations as cats kill birds too. Current efforts include a “25 million for our desert tortoise program, and in developing a high quality, scientifically valid, and robust avian plan.”

I don’t quite get the advantage of solar thermal, which reflects heat to a central tower to power turbines, over solar photovoltaic. PV is not nearly as destructive to wildlife and birds and uses practically no water, an important issue in baking deserts. Another problem with Ivanpah is airline pilots report the glare can be blinding.

California could be 100% renewable energy by 2050, say researchers


A combination of renewable energy from wind, water, and sunlight could power California completely by 2050, say perky researchers from Stanford. In my view they’re a bit too perky as well as overly We Know What Is Best For You.

First off, all those pesky gas and diesel vehicles would need to be completely replaced by electric, they say. No word on how electric semis would be able to haul multi-ton loads up the steep Grapevine outside of Los Angeles. No electric truck to my knowledge has the needed torque and power to do this. Maybe they will one day. But they don’t now.

Then there’s this.

[Wind, water, and sunlight] sources selected “ranked the highest among several proposed energy options for addressing pollution, public health, global warming, and energy security.”

Um, shouldn’t cost be a criteria too? Also, grid technology neccessary to support 100% renewables doesn’t exist yet. Perhaps it will soon. However, making projections based on technology that doesn’t exist yet seems a bit specious.

They claim going to 100% renewables would pay for itself.

“The California air-pollution health plus global climate cost benefits from eliminating California emissions could equal the $1.1 trillion installation cost of 603 GW of new power needed for a 100% all-purpose WWS system within ~7 (4–14) years.”

“Global climate cost benefits”, whatever that might be, do not pay for the project or decrease costs eleswhere and should not be included in cost calculations.

Self-cooling PV cells use layer of silica glass


Stanford researchers have developed a way to keep solar photovoltaic cells cooler, even in baking temperatures. If the cells get too hot, efficiency drops as does the lifetime of the cells. Adding pyramid-shaped layer of silica glass allows the cells to cool on their own, avoiding the need for water or wind for cooling.

“The goal was to lower the operating temperature of the solar cell while maintaining its solar absorption,” Fan said. “We were quite pleased to see that while the flat layer of silica provided some passive cooling, the patterned layer of silica considerably outperforms the 5 mm-thick uniform silica design and has nearly identical performance as the ideal scheme.”

Thus, efficiency and cell lifetimes both increase, hugely improving productivity.

Ivanpah Solar Thermal Plant in Mojave Desert


The ginormous Ivanpah Solar Electric Generating System in California near Primm NV reflects baking heat from the sun to a central tower where electricity is generated from steam turbines. Some solar thermal plants store excess heat in molten salt to be used later to generate power. Ivanpah doesn’t do this. It doest recycle 100% of the steam, keeping water usage at a minimum. However, the concentrated heat does kill birds and the glare can be an aviation hazard. No source of electricity creation is completely benign. That’s just the way it is.