Archive | Renewable energy

I don’t care how much I pay, gonna ride my poo-powered bus every day

bio-bus
The Bio-Bus will go into service in Britain next next, shutting people to an airport. It runs on biomethane derived from food waste and human poop.

The company says that by using the alternative energy source, its new bus will also put out less carbon emissions than those powered by traditional diesel engines.

The biomethane is being produced at a sewage treatment plant; the BBC says it “takes the annual waste of about five people to produce” a full tank.

No shit, this is the best headline: All aboard the poop bus, now farting around the UK

Inquiring minds want to know if the bus has a bathroom in it, and thus could contribute to its own biomethans power.

Posted in Renewable energy0 Comments

Ivanpah solar power plant generating way less power than expected

Credit: ivanpahsolar.com/

Credit: ivanpahsolar.com/

The Ivanpah concentrated solar power plant in the California Mojave desert near Primm Nevada is not producing nearly as much electricity as predicted. Natural gas, not the heat of the sun, is being used more than originally projected to power the turbines. CSP works by reflecting the heat of the sun from heliostat mirrors to a central tower to run the turbines. Ivanpah has produced a mere 25% of expected electricity since December 2013 when it began production, a dismal result indeed.

The scale of Ivanpah is much larger than any other CSP plant. The plant operator says the weather wasn’t as sunny as expected. This seems a bogus excuse. Was there really 75% less sunshine than projected?

[Second quarter] sales totaled 133,807 MWh and at an average price of $167.85/MWh that generated $22.46 million in revenue.

That relatively small output, combined with the project’s $2 billion price tag, could no doubt hurt all three Ivanpah owners

Increasingly, CSP is having trouble competing with solar PV. If Ivanpah continues to under-perform, then future CSP plants may not get funded. . Ivanpah was funded by NRG Energy, Google, and BrightSource Energy primarily by using a $1.6 billion federal loan guarantee. If Ivanpah continues to falter and the federal government get stuck with the loan, it’ll seriously affect renewable energy funding going forward.

Another sign of the plant’s early operating woes: In March, the owners sought permission (PDF) to use 60 percent more natural gas in auxiliary boilers than was allowed under the plant’s certification, a request that was approved in August.

Using much more natural gas to produce energy rather than using solar heat as planned could, if it continues, might make Ivanpah not able to qualify as being renewable energy under the California plan for 33% in-state renewable energy by 2020. Plus, it’ll make foes of renewable energy chortle with laughter.

Some CSP plants store excess heat in underground molten salt caverns and thus can product energy when the sun isn’t shining. Inexplicably, Ivanpah doesn’t do this, a decision probably made to save money. In retrospect, this seems short-sighted and may imperil the entire project.

Posted in Renewable energy, Solar power0 Comments

Mandalay Bay in Vegas now has 20 acres of rooftop solar

Mandalay-Solar

The Mandalay Bay casino and convention center in Vegas is ginormous. MGM Resorts, who owns it, has installed 21,324 photovoltaic panels on twenty acres of convention center roof. Yes, twenty acres… The 6.4 MW system will provide 20% of power for the center, with an additional 2 MW coming when the convention center is expanded. Well done, MGM.

How big is Mandalay Bay? The main hotel is upscale. Delano, an even-more upscale hotel, is in a separate building. A super-upscale Four Seasons occupies five floors of the main hotel. The casino is 135,000 sq ft, The convention center is 1,000,000 sq ft. An events center has 12,000 seats. There are 30+ restaurants, shopping malls, multiple bars and other venues. Plus, Mandalay Bay connects to Luxor (semi-upscale) and Excalibur (low-end),  which are also owned by MGM.

The project is being done in partnership with NRG Energy. Once it is complete, Mandalay Bay will buy from NRG the solar energy through a Power Purchase Agreement at prices below the peak rates on the traditional NV Energy electrical grid (Based in New Jersey, NRG is also a major partner in the Ivanpah solar plant that opened earlier this year near Primm, Nev.).

Posted in Renewable energy, Solar power0 Comments

Investing in biofuel and energy is way harder than Silicon Valley startups

biofuel

Silicon Valley billionaire Vinod Khosla has learned the hard way that financing tech startups is trivially easy compared to alternative energy like biofuels. He has financed several biofuel startups, and they’ve all crashed and burned, taking lots of investor and tax money with it. A big problem is his arrogance that Silicon Valley could do what ginormous energy companies haven’t been able to do, which is manufacture cost-effective biofuel on a commercial scale.

What Khosla didn’t appreciate is that he isn’t smarter than the people in the oil industry. It’s just that the computing and information technology industries were still relatively new, and a great deal of innovation was still taking place in a young field with lots of room for innovation. The oil industry is 150 years old, and while the fracking boom shows that innovation still takes place in the oil industry, it is a very mature industry. Thus change tends to be incremental, not exponential. Almost everything that appears novel to an outsider like Khosla has almost certainly been investigated by multiple companies.

There’s no oil company conspiracy here, says Robert Rapier of Energy Trends Insider. Energy companies have invested hugely in trying to develop biofuel and have no reason to hold such developments off the market, as a patent on such a process would immensely profitable. The reason they have done so is because no one has figured out how yet.

Khosla glossed over the problems and made it sound easy as pie. He is accustomed to seeing technical challenges solved in Silicon Valley. Again, that’s primarily because these challenges are often relatively new. They are not like some of the challenges in the energy business, which have seen decades of work and billions of dollars spent on some of these approaches. The easy challenges were all solved long ago.

Posted in Renewable energy0 Comments

Increasing energy efficiency leads to greater, not less, demand.

say what

Higher levels of energy efficiency does not decrease demand. Instead it increases it. This counter-intuitive effect is called rebound. Thus, expected energy savings and reductions in emissions from better efficiency are substantially less than might be expected.

The IPCC made clear: climate mitigation strategies that heavily rely on energy efficiency measures must be re-evaluated. After years of simplistic accounting, which was roundly criticized by Breakthrough and independent scholars, the IEA has finally caught up to the academic literature. Their latest report, Capturing the Multiple Benefits of Energy Efficiency, acknowledges that direct rebound in wealthy countries ranges from zero to 65 percent and agrees with a major modeling effort finding globally averaged rebounds from energy efficiency could reach as high as 52 percent by 2030.

“Rather than saving energy, in many cases we can expect the adoption of energy efficiency-improving technologies to contribute to processes that lead to an overall increase in energy consumption.”

This pattern is similar to water use in the Imperial Valley of California. Big agriculture is constantly and successfully finding ways to grow crops with less water per acre. However, water usage there is increasing because farmers simply plant crops on more land. Water usage per acre has dropped. The number of acres growing crops has increased. The same process is true for energy usage. Increase efficiency and demand increases too.

Posted in Climate change, Renewable energy

Less hydropower, more natural gas generation due to California drought

CA-drought

In-state hydropower output dropped 50% from the norm in California in 2014. The difference is being made up with increased use of natural gas, as well as wind and solar. However, natural gas power does require substantial amounts of water for cooling, creating a bit of a Catch-22. California also imports large amounts of energy from big hydro in Washington and coal plants in Utah, Arizona, and New Mexico.

California’s drought, which began in 2011, has resulted in a significant decline in hydropower generation. On average, hydropower accounted for 20% of California’s in-state generation during the first six months of each year from 2004 to 2013. During the first half of 2014, however, hydropower accounted for only 10% of California’s total generation. Monthly hydropower generation in 2014 has fallen well below the 10-year range for each individual month.

Wind and solar generation are also playing an increasingly significant role in California’s generation mix. For the first time, wind generation surpassed hydro generation in California, doing so in both February and March of 2014.

The Columbia River Basin in Washington supplies 40% of hydropower in the US. Some parts are in drought but nowhere near as severe as California.

Posted in Renewable energy, Water

Iceland uses the most energy per capita, and it’s all renewable energy

iceland

Hydro and geothermal power Iceland, creating electricity and heat for buildings. Power is cheap there so people uses lots of it. And it’s entirely renewable energy too.

Posted in Renewable energy

Floating solar array installed in Britain

Floating PV system

Floating solar panels don’t use land, can be installed on reservoirs and water areas not used for other purposes, and help prevent water loss by evaporation. British farmer Mark Bennett has installed a 200kw array on a reservoir and hopes this will encourage others to do so.

Bennett’s solar farm uses Ciel et Terre’s modular Hydrelio system. He says the potential is there for systems to be up to 100 times the size of his installation. “We are speaking to big utility companies, to agricultural companies – anyone with an unused body of water. The potential is remarkable,” he told NCE. The floating solar panels are made of 100 percent recyclable materials, have a life expectancy of 30 years, and are safe to install on drinking water reservoirs.

 

Posted in Renewable energy

Small bird deaths by modern wind turbines ‘biologically insignificant’

1980's wind turbines at Altamont

1980’s wind turbines at Altamont Pass are more hazardous to birds than modern turbines

Previous studies on avian deaths by wind turbines generalized from studies done at Altamont Pass CA, which have ancient, more dangerous turbines. Modern wind turbines are much larger, slower, do not have latticing, are out of hunting range of raptors, and lower than small bird migration paths. A new peer-reviewed study shows that avian death rate from these new turbines is less than 0.01% of the small passerby bird population, which is “biologically insignificant,” especially considering that 30% die of natural causes each year. A study of raptor and water bird death from wind turbines is coming.

The avian mortality rate found in the new study updates estimates from previous studies that over-sampled information from the earliest wind farms at California’s Altamont Pass. The faster-turning small kilowatt-level 1980s turbines were low on the hillside, where raptors swoop on updrafts to hunt prey on the ground.

Posted in Renewable energy, Wind turbines

Ginormous wind power / compressed air energy storage in Utah, Wyoming

wind-caes

An ambitious plan to build a 2 GW wind farm in Wyoming and store excess power using compressed air in underground caverns in Utah. When energy is needed, the compressed air is released to power turbines. Most of the power would go to California when extra energy is needed. No fossil fuels will be used to generate energy. Compressed air energy storage is currently being used successfully in Alabama and Germany. It’s a proven technology that needs certain types of caverns to store the air in.

As the Casper Star Tribune points out, the entire system—this so-called “Hoover Dam of the 21st century,” with a total price tag pushing $8 billion—could someday power as many as 1.2 million California homes and it could be operational as early as 2023.

Posted in Renewable energy

Contact

Bob Morris bob@polizeros.com

310.600.5237

Morris Consulting

  • Legacy PC database migration to Windows
  • WordPress design and support
  • Data conversion

Contact Morris Consulting at bomoco.com.

Categories

Archives